Original investigation

A new species of *Aepeomys* Thomas, 1898 (Rodentia: Muridae) from the Andes of Venezuela

By J. OCHOA G., MARISOL AGUILERA, V. PACHECO, and P. J. SORIANO

Asociación Venezolana para la Conservación de Áreas Naturales Caracas, Venezuela; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela; Department of Mammalogy, American Museum of Natural History, New York, USA; Departamento de Biología, Universidad de Los Andes, Mérida, Venezuela.

Receipt of Ms. 25. 04. 2000
Acceptance of Ms. 20. 09. 2000

Abstract

A new species of Neotropical rodent of the genus *Aepeomys* is described based on 24 specimens collected in the Andean region of Venezuela (Lara and Trujillo States). Among the diagnostic characters are: large size; first and fifth digits of pes not extending beyond the commissure of digits 2–3 and the first interphalangeal of digit four, respectively; posterior margin of zygomatic ramus of the maxilla with a distinctive notch; palate extending to the posterior border of M3 or behind this molar; and paraflexus of M1 and M2 divided by an enamel bridge. In addition, the new species shows the following karyological features: 22 chromosomal pairs (2n = 44); 46 autosomal arms (FN = 46); a low proportion of two-armed elements; autosomal chromosomes with abundant heterochromatin around the pericentromeric areas; and short arms of chromosomes X and Y entirely heterochromatic. According to the most recent systematic revision of the species assigned to *Aepeomys*, only two forms could be considered as members of this genus: *A. lugens* (the type species) and the taxon described herein. Both have geographic distributions restricted to highlands from the northern Andes, where the new species inhabits primary cloud forests and páramos located in the northeastern extreme of the Venezuelan Andean Cordillera.

Key words: *Aepeomys*, Thomasomyine, Taxonomy, Andes, Venezuela

Introduction

Neotropical sigmodontine rodents of the genus *Aepeomys* are members of the thomasmomyine group, together with six additional genera whose systematic and phylogenetic relationships remain unclear: *Delomys* Thomas, 1917; *Phaconomys* Thomas, 1917; *Rhabomys* Thomas, 1917; *Rhizomys* Thomas, 1884; *Thomasomys* Coues, 1884; and *Wilfredomys* Avila-Pires, 1960 (AGUILERA et al. 1994, 2000; GÓMEZ-
1994; Gardner and Patton 1976; Musser and Carleton 1993; Reig 1986; Sorian o and Ochoa 1997; Sorian o et al. 1998) are coincident in considering them as differentiated taxa.

Four nominal species of Aepeomys have been described (Cabrera 1961; Musser and Carleton 1993), although at the present time only two of them are recognized as valid taxa (both have geographical distributions restricted to highlands in the northern Andes): Aepeomys lugens (Thomas, 1896), recorded in several localities from western Venezuela to Andean Ecuador; and A. fuscatus (Allen, 1912), known from the western and central Andes of Colombia. However, the highly differentiated cranial morphology shown by A. fuscatus with respect to A. lugens (the type species of the genus) and other related forms, has been used among the arguments to consider A. fuscatus as representative of a neglected taxon whose evolutionary lineage could be more related with the ozymomyine tribe, representing perhaps an undescribed genus (Pacheco and Voss unpubl. data).

As part of the results of a field study on the small mammal communities inhabiting highland ecosystems from the Andean region of Venezuela (Lara and Trujillo States), we caught a series of thomomysine specimens whose general morphology corresponds to Aepeomys (sensu stricto), although their external, cranial, and karyological features are not referable to previously known species assigned to this genus. Apparently, they represent a new species that we describe below. Some of these specimens, in addition to others collected in the Venezuelan Andes and cited herein as representatives of the new taxon, were formerly recorded as Aepeomys lugens or Aepeomys sp. by Handley (1976), Soria no et al. (1990), and Aguiler a et al. (1994, 2000).

Material and methods

Specimens examined (all adults) are deposited in the following institutions: American Museum of Natural History (AMNH); the Colección de la Estación Biológica de Rancho Grande (EBRG); Maracay, Venezuela; the Colección de Vertebrados de la Universidad de Los Andes (CVULA), Mérida, Venezuela; and the Colección de Vertebrados de la Universidad Simón Bolivar (CVUSB), Caracas, Venezuela. Species, individuals and localities corresponding to this material are as follows: Aepeomys fuscatus (1: holotype). Colombia: Valle del Cauca, San Antonio, near Cali, 2135 m (AMNH-32230), Aepeomys lugens (21, including two topotypes). Venezuela-Mérida State: Páramo Los Conejos, 24 km W Mérida, 2928 m (AMNH-96169; holotype of A. otleri); 5.5 km E + 2 km S Tabay (Middle Refugio), 2600 m (EBRG-15569 and 15570); 1 km N + 2 km W Mérida (Santa Rosa), 2020 m (EBRG-15571 and 15572); El Morro, 9 km SSW Mérida City, 2160 m (EBRG-22009 and 22010; topotypes). Táchira State: Páramo Los Colorados (Parque Nacional Páramos Batallón y La Negra), 12 km SSE El Cobre, 3200 m (EBRG-21513 to 21523; CVULA-5747, 5751, and 5753), Aepeomys regis (15). Venezuela-Lara State: El Blanquito, 17 km SE Sanare, Parque Nacional Yacambú, 1600 m (CVULA-2738; EBRG-4208, 21735, 21440, and 22580) to 22582); Rood El Blanquito-Sanare, km 6, Parque Nacional Yacambú, 1700 m (EBRG-10621); El Avileño, near El Blanquito, 9 km SE Sanare, Parque Nacional (Yacambú, 1600 m (CVULA-2710 and 2718). Trujillo State: Macizo de Guaramalacal, 9 km ESE Bocanó, Parque Nacional Guaramalacal, 3100 m (CVULA-3350); Guaramalacal, 5 km E Bocanó, Parque Nacional Guaramalacal, 2230 m (CVULA-3139); Pica La Toma, 7 km E Bocanó, Parque Nacional Guaramalacal, 2300 m (EBRG-22714); 14 to 15 km E Trujillo, near Hacienda Missiá, 2225 to 2350 m (EBRG-15567 and 15568), Thomomys kylophilus (5). Venezuela: 35 km S + 22 km W San Cristóbal (Buena Vista), Táchira State, 2345 m (EBRG-15397 to 15398), Thomomys laniger (3) Venezuela: 4 km + 6.5 km E Tabay (La Coromoto), Mérida State, 3170 m (EBRG-15227 to 15230); 5 km S + 7 km E Tabay (near La Coromoto), Mérida State, 3251 m (EBRG-15231), Thomomys vestitus. (1) Venezuela: El Bahío, 9 km SE Santo Domingo, Mérida State, 3100 m (EBRG-32012).

Age criteria follow Voss (1991). Cranial measurements were taken according to Voss (1991, 1999). Nomenclature of the occlusal components of molar teeth follows Reig (1977). Karyological analyses were carried out on 13 specimens of A. lugens and nine specimens representing the new taxon (five from Lara State and four from Trujillo State), including the sample described by Aguiler a et al. (2000). Bone marrow metaphase chromosomes were obtained by a modification of Ford and Hambert's (1985) in vivo colchicine
technique. C- and G-banding patterns were obtained as described by Barros and Patton (1985) and Chiarelli et al. (1972), respectively. Chromosome nomenclature followed Levany et al. (1964). Fundamental numbers (FN) are autosomal arm numbers.

Results

Aepesomys reigi new species

Holotype: A female (dry skin, skull, and karyotype analysis; CVUSB-928) with adult pelage, fused sphenoccipital suture, and the third molar erupted (age class IV). Collected by Marisol Aguiletra et al. in August 1986 at El Blanquito, Parque Nacional Yacambú, 17 km SE Sanare, Lara State, Venezuela, 1,600 m (approx. 9°40′ N; 69°37′ W; Fig. 1).

Paratypes: Seven specimens (6 as dry skins and skulls; one in alcohol) with karyotype analysis: Lara State, Parque Nacional Yacambú, El Blanquito, 17 km SE Sanare, 1,600 m; 3 males and 1 female collected by

Fig. 1. Distribution of *A. reigi* (triangles) and *A. lugens* (circles) in Venezuela. White symbols correspond to the type localities.
M. Aguilara et al. (CVUSB-927, 1365, 1419, and 1420), Trujillo State, Parque Nacional Guaramacal (approx. 9°15’ N; 70°12’ W), Pica La Toma, 7 km E Boconó, 2,300 m; 1 male and 2 females collected by J. Ochoa et al. (EBRG-22715 to 22717).

Etymology: The epithet *reigi* honors the memory of Dr. Oswaldo Reig, who devoted his life to the study of the systematics and evolution of South American rodents, and made important contributions to the education and encouragement of many Latin American mammalogists.

Distribution: Known only in highlands (1600–2250 m) from the northeastern extreme of the Venezuelan Andes (Lara and Trujillo States).

Diagnosis: Size large for the genus as indicated by external and cranial measurements (Tab. 1), in addition to postcranial skeleton development; first and fifth digits of pes not extending beyond the commissure of di-

<table>
<thead>
<tr>
<th>Measurement</th>
<th>A. reigi</th>
<th>A. lugens1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of head and body</td>
<td>113.6 ± 5.88</td>
<td>110.1 ± 7.54</td>
</tr>
<tr>
<td>(104–125)15</td>
<td>(100–119)7</td>
<td></td>
</tr>
<tr>
<td>Length of tail</td>
<td>127.1 ± 8.29</td>
<td>121.7 ± 4.15</td>
</tr>
<tr>
<td>(115–142)15</td>
<td>(114–127)7</td>
<td></td>
</tr>
<tr>
<td>Length of hind foot</td>
<td>27.9 ± 1.30</td>
<td>27.0 ± 3.96</td>
</tr>
<tr>
<td>(25–30)15</td>
<td>(20–30)7</td>
<td></td>
</tr>
<tr>
<td>Condylar-incisive length</td>
<td>27.8 ± 0.84</td>
<td>26.6 ± 0.58</td>
</tr>
<tr>
<td>(26.6–29.3)16</td>
<td>(25.8–27.6)17</td>
<td></td>
</tr>
<tr>
<td>Length of diastema</td>
<td>8.6 ± 0.31</td>
<td>8.2 ± 0.25</td>
</tr>
<tr>
<td>(8.0–9.0)18</td>
<td>(7.7–8.7)18</td>
<td></td>
</tr>
<tr>
<td>Length of molars</td>
<td>4.5 ± 0.11</td>
<td>4.3 ± 0.12</td>
</tr>
<tr>
<td>(4.3–4.8)18</td>
<td>(4.0–4.4)18</td>
<td></td>
</tr>
<tr>
<td>Length of incisive foramen</td>
<td>5.6 ± 0.22</td>
<td>5.5 ± 0.20</td>
</tr>
<tr>
<td>(5.2–6.0)16</td>
<td>(5.1–5.9)18</td>
<td></td>
</tr>
<tr>
<td>Breadth of incisive foramen</td>
<td>2.4 ± 0.18</td>
<td>2.3 ± 0.14</td>
</tr>
<tr>
<td>(2.2–2.7)16</td>
<td>(2.0–2.5)18</td>
<td></td>
</tr>
<tr>
<td>Breadth of rostrum</td>
<td>5.0 ± 0.23</td>
<td>4.5 ± 0.27</td>
</tr>
<tr>
<td>(4.6–5.3)14</td>
<td>(4.9–5.1)16</td>
<td></td>
</tr>
<tr>
<td>Breadth of palatal bridge</td>
<td>3.8 ± 0.16</td>
<td>3.5 ± 0.25</td>
</tr>
<tr>
<td>(3.5–4.0)17</td>
<td>(3.0–4.0)17</td>
<td></td>
</tr>
<tr>
<td>Breadth of zygomatic plate</td>
<td>1.8 ± 0.13</td>
<td>1.8 ± 0.14</td>
</tr>
<tr>
<td>(1.6–2.1)18</td>
<td>(1.5–2.0)18</td>
<td></td>
</tr>
<tr>
<td>Least interorbital breadth</td>
<td>6.1 ± 0.17</td>
<td>6.0 ± 0.26</td>
</tr>
<tr>
<td>(5.9–6.4)17</td>
<td>(5.8–6.4)18</td>
<td></td>
</tr>
<tr>
<td>Breadth of braincase</td>
<td>13.3 ± 0.22</td>
<td>13.1 ± 0.35</td>
</tr>
<tr>
<td>(12.9–13.7)17</td>
<td>(12.4–13.8)18</td>
<td></td>
</tr>
<tr>
<td>Zygomatic breadth</td>
<td>14.8 ± 0.37</td>
<td>14.1 ± 0.38</td>
</tr>
<tr>
<td>(14.2–15.6)15</td>
<td>(13.6–14.9)17</td>
<td></td>
</tr>
<tr>
<td>Depth of incisors</td>
<td>1.3 ± 0.11</td>
<td>1.2 ± 0.11</td>
</tr>
<tr>
<td>(1.0–1.4)17</td>
<td>(1.0–1.4)18</td>
<td></td>
</tr>
<tr>
<td>Length of orbital fossa</td>
<td>9.1 ± 0.24</td>
<td>8.4 ± 0.21</td>
</tr>
<tr>
<td>(8.6–9.8)17</td>
<td>(8.0–8.8)17</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Selected external and cranial measurements (in millimeters) of adult specimens of *Aepomys reigi* and *Aepomys lugens* (age classes 2–4) from Venezuela. Data are: Mean ± SD, (range), and sample size.

1Sample includes two topotypes and the holotype of *Aepomys* (see specimens examined).
gits 2–3 and the first interphalangeal of digit four, respectively; posterior margin of zygomatic ramus of the maxilla with a distinct notch; palate extending to the posterior border of M3 or behind this molar; interparietal length (along an antero-posterior axis) near half of parietal length; and paraxilus of M2 and M3 divided by an enamel bridge that crosses from the paracine to the base of the anteroleph. Karyotype with 22 chromosomal pairs (2n = 44), 46 autosomal arms (FN = 46), a low proportion of two-armed elements, the automosomal chromosomes with abundant heterochromatin around the pericentric areas, and the short arms of the chromosomes X and Y entirely heterochromatic.

Description: Length of head and body 104–125 mm. Tail approximately as long as body (Tab.1), sparsely covered by short dark-brown hairs and uncolored (dark above and below). Legs, heels, and dorsal surface of pes sparsely covered by brown hairs. Body pelage dense and soft (longer in specimens from the highest altitudes). Dorsal coloration ranging from dark gray-brown to reddish gray-brown, with moderately to intensively hoary appearance. Dorsal fur consisting of shorter hairs (approx. 9–12 mm) with golden tips and scattered longer hairs (approx. 12–15 mm) with dark brown tips (in a few cases with whitish tips); both having the basal 75% gray. Ventral pelage shorter (approx. 7 mm) and paler than dorsum, ranging from moderately to intensively hoary (hairs with golden tips and the basal 75% gray). Pinnacae 18–21 mm long and furred on both sides; inside part yellowish, contrasting in color with the dorsal fur. Manus cream-colored and paler than hind feet. Pes narrow and long (adapted for terrestrial life; Tab.1); first and fifth digits not extending beyond the commissure of digits 2–3 and the first interphalangeal of digit four, respectively.

Incisors narrow and moderately developed (not robust), with sharp tips. Upper incisors with the anterior surface slightly concave. Maxillary and mandibular toothrows relatively short (Tab.1; Fig.2); first molars antero-posteriorly elongated (length averages approximately 50% of their respective toothrows). Upper molars with rounded protocone and hypocone, and the paracone and metacone antero-posteriorly sharp. Paraxilus of M1 and M2 divided by an enamel bridge that crosses from the paracine to the base of the anteroleph, producing an internal fossa, M3 with triangular shape in dorsal view. M\textsubscript{1} with a distinctive protolophid in most specimens, which reaches the cingulum.

Skull with general appearance resembling a typical *Aepoemys* (see Fig. 2 and 3 for comparisons with *A. lugens*). Rostrum narrow and elongated (approx. 1/3 of the greatest length of skull), with acute profile and only the external capsule of the nasolacrimal foramen exposed in dorsal view; nasal and premaxillary bones extending beyond the anterior surface of incisors and the gnathic process to form a distinct rostral tube. Nasals laterally concave and flat in dorsal profile, forming a continuous surface with the premaxillae; posterior border extending to the level of the zygomatic plate. Interorbital constriction relatively broad, without concealing (in dorsal view) the labial ridge of maxillary and the molars. Braincase moderately inflated and slightly concave in dorsal profile; the posterior surface concealing the occipital condyles in dorsal view. Interparietal length (along an antero-posterior axis) near half of parietal length. Lambdoidal ridges scarcely developed. Zygomatic arches completely ossified, filamentous and fragile. Zygomatic plate relatively narrow (Tab.1; Fig.3), with the posterior edge extending to the first molar (Fig.2). Posterior margin of zygomatic ramus of the maxilla with a distinct notch. Lumen of the infraorbital foramen compressed laterally and expanded dorso-ventrally. Gnathic process scarcely developed. Masseteric tubercle large. Palatal bridge moderately long (Tab.1; Fig.2), extending to the posterior border of M3 or behind this molar. Posterior margin of palate without medial process in most specimens; therefore, the anterior margin of the mesopterygoid fossa has a shallow shape. Incisive foramina extending posteriorly beyond the masseteric tubercle,
without reaching the level of the first molar; margins of the anterior half strongly convergent anteriorly. Postglenoid foramen compressed dorso-ventrally and expanded antero-posteriorly. Foramen magnum with the inferior border almost reaching the level of the auditory bulla. Auditory bulla moderately inflated. Mandible with the tip of the condylar process behind the angular process.

Karyotype with 22 chromosomal pairs (2n = 44), 46 autosomal arms (FN = 46), and low proportion of two-armed elements (AGUILERA et al. 1994). Autosomal chromosomes with abundant heterochromatin around the pericentromeric areas. Short arms of chromosomes X and Y entirely heterochromatic (AGUILERA et al. 2000).

Comparisons: Among the thomasomine group, the genus most closely related to Aepeomys is believed to be Thomasomys (AGUILERA et al. 2000; GARDNER and PATTON 1976), whose cranial morphology is clearly differentiated from A. reigi and A. lugens in the following features (Fig. 2 and 3); shorter rostrum; zygomatic arches more expanded laterally; narrower interorbital region; braincase less inflated at the level of lambdoidal ridges; broader zygomatic plate; larger incisive foramina (almost reaching the first molars); and shorter palate (posterior border not extending beyond the third molar). In addition, Venezuelan species of Thomasomys are larger (T. auratus, T. hylophitus, and T. vestitus) and/or have much paler brownish fur (T. hylophi-
Fig. 3. Lateral views of crania of *Aepoeomys lugens* (topotype; a), *Aepoeomys reigi* (holotype; b), and *Thomasomyys laningeri* (c). Approx. X1.8.

With respect to the species previously included within *Aepoeomys*, *A. reigi* resembles the external and cranial morphology of *A. lugens*, except for the following differences: size larger (Tab. 1); fur on head and body shorter and rougher; manus and pes broader; legs, heels, and dorsal surface of pes sparsely haired (densely haired in *A. lugens*); first and fifth digits of pes shorter; posterior margin of zygomatic ramus of the maxilla with a distinct notch, rather than shallow as in *A. lugens* (as consequence, in *A. reigi* the orbital fossa is larger, Tab. 1); incisive foramina broader, with margins showing a more convergent position anteriorly; interparietal longer in most specimens (antero-posterior midline near half of the parietal length, rather than 30-40% as in *A. lugens*); palate extending to the posterior border of M³ or behind this molar (near or before the posterior border of M³ in *A. lugens*); posterior margin of palate without medial process in most specimens (therefore the anterior margin of the mesopterygoid fossa is shallow rather than incipiently biconcave as in *A. lugens*); maxillary toothrow relatively longer; M³ larger and triangular in dorsal view (rounded in *A. lugens*); M¹ and M² with paraflexus divided by an enamel bridge (continuous in most specimens of *A. lugens*); coronoid and condylar processes broader and larger, producing deeper sigmoid and angular notches, respectively. M₁ with a distinctive protolophid in most specimens, which reaches the cingulum (reduced or absent in *A. lugens*). Some of these features (particularly those related with cranial and dental morphology) show the maximum divergence in specimens of *A. reigi* from Lara State. In addition, *A. lugens* has a very different karyotype, with fewer chromosomal pairs (2n = 28 vs 2n = 44), more autosomal arms (FN = 48 vs FN = 46), and a lower concentration of heterochromatin (especially conspicuous in the short arms of two autosomal pairs and the Y chromosome). *Aguilera et al. 1994, 2000*. These chromosomal variations were consistent when we compared *A. reigi* with specimens of *A. lugens* from two localities in Venezuela: the type locality (El Morro, Mérida State) and Páramo Los Colorados, Táchira State (*Aguilera et al. 2000*).

Regarding *A. fuscatus* the external and cranial features of this species show a high degree of differentiation with *A. reigi*, revealing a morphological pattern that appears to be taxonomically separated from the thomasomyine group and perhaps corresponds to a taxon whose evolutionary lineage is more related with the oryzomyine tribe (*Pacheco and Voss unpubl. data*). Among the most conspicuous characteristics in *A. fuscatus* supporting this assessment are: darker fur coloration; shorter and broader rostrum (without the acute profile shown by *A. reigi* and *A. lugens*); anterior portion of zygomatic arches more expanded and broader; broader zygomatic plate; narrower interorbital breadth; braincase less inflated; short-
er incisive foramina and palate; and broader mandibular branches. These features, in addition to the extremely high number of chromosomal pairs (2n = 54) and autosomal arms (FN = 62), reported by Gardner and Patton (1976) for *A. fuscatus* are clear evidences of a differentiated evolutionary pattern with respect to *Aepoecamys*.

Discussion

The morphological variation between *A. reigi* and *A. lugens*, in addition to the high degree of differentiation in the number and structure of chromosomes, support the hypothesis of evolutionary divergences in both species, such as it has been proposed for other thomasonyne rodents (Gardner and Patton 1976; Gómez-Laverde et al. 1997). Despite the higher diploid number in *A. reigi* with respect to *A. lugens* (44 vs 28), and based on their similarities in fundamental numbers (46 vs 48, respectively), we postulate that karyological differences found in these species could be reached by chromosomal rearrangements evolving principally robertsonian changes (Aguiuera et al. 2000).

An important aspect within the evolutionary context of *Aepoecamys* species is the direction of chromosomal transformation in *A. reigi* and *A. lugens*. According to Gardner and Patton (1976), theomasonyne karyotypes are characterized by a generalized condition of diploid number of 42 or 44, in addition to a predominantly acrocentric autosomal complement. This generalized condition is present in *A. reigi* and allows to consider it as a primitive form. This fact, together with the great proportion of two-armed elements shown by the karyotype of *A. lugens*, are arguments to postulate this last species as a derived form (Aguiuera et al. 2000). Some complementary evidences supporting this hypothesis are the differences in quantity and distribution of the constitutive heterochromatin: low and chromosomal restricted in *A. lugens* vs abundant and distributed in chromosomes of *A. reigi*, the last pattern has been associated with a primitive condition in eukariotic chromosomal evolution (IAM 1991).

The geographic distribution of *A. reigi* seems to be allopatric with respect to *A. lugens*, at least in the northeastern extreme of the Venezuelan Andean Cordillera. However, we do not reject the possibility of sympatric distribution in highlands (>1,500 m) near to the border of Merida and Trujillo States. Future karyological studies, in a more extensive area, are required to provide a further diagnosis on the biogeographic patterns of these taxa. Other non-volant small mammals recorded at Yacambú and Guaramaca are: *Caluromys philander*, *Didelphis albiventris*, *Didelphis marsupialis*, *Gracilinanus arys*, *Marmosops fuscatus*, *Micoerus demerarae*, *Cryptosilis meridensis*, *Mustela frenata*, *Sciurus granatensis*, *Heteromys anomalus*, *Akodon urichi*, *Ichthyomys hydrobates*, *Microryzomys nitidus*, *Neacomys tenuipes*, *Oecomys flavicollis*, *Oligoryzomys fulvescens*, *Orzyomys meridensis*, *Rhipidomys venustus*, *Rhipidomys venezuelae* and *Thomasonmys laniger* (Soriano et al. 1990).

The known ecological distribution of *A. reigi* corresponds to primary cloud forests (humid montane forest according to Huber and Alarcón 1988) and small patches of páramos surrounded by continuous masses of cloud forest; these ecosystems, in addition to seasonal forests and evergreen dry forests, have been previously recorded among the ecological conditions used by *A. lugens* (Handley 1976; Soriano et al. 1990). *A. reigi* appears to be a relatively uncommon species along its ecological range. Even though field data for páramos are insufficient, sampling efforts of 3,724 trap-nights in cloud forests, accumulated during inventories conducted by the authors, allowed to catch 27 individuals of *A. reigi* that represented 10.6% of total non-volant small mammals trapped in this ecosystem (*Orzyomys albiguauris* and *Heteromys anomalus* were the dominant species). Collected specimens have been found on the ground in densely forested sites (beside logs, at the base of trees, in rocky places, along trails, or near small streams) or in open areas (close to the
ecotone between páramos and forests) covered by shrubs and herbaceous vegetation (mainly *Espeletia schultzii* and grasses). We used as bait a mixture of sardine or bacon with oats, peanut butter, and/or kitchen oil. Some specimens maintained in captivity were fed with insects (Orthoptera), domestic fruits, and seeds. Hairs and insect remains (Coleoptera) were found in the stomach content of one specimen from Yacambú. Three males collected in August and December showed inguinal testes.

Acknowledgements

We would like to thank the assistance given during field work by Jhonny Murillo, Richard Gavidia, Amella Díaz de Pascual, Tina Oli-veira, Rosa Moscarella, Eladio Márquez, Ernesto Panier, Maripía Bevilacqua, Lourdes Suárez, Norberto Rebolloso, Isamar Ochoa, Mariángela Ochoa, Elisenda Delgado, IN-PARQUES, and the Asociación Venezolana para el Estudio de los Mamíferos. Javier Sánchez and Robert Voss gave important comments to the first draft of the manuscript and allowed revise the specimens housed in the Colección de la Estación Biológica de Rancho Grande and the American Museum of Natural History, respectively. Antonio Pérez-Zapata (†) and Marcela Gómez provided valuable information used in this description. Field researches of the senior author are supported by Wildlife Conservation Society. This study is a contribution of the project “Diversidad de Pequeños Mamíferos en Ecosistemas de Tierras Altas del Norte de Venezuela” (CONICIT-CPV-240056).

Zusammenfassung

Eine neue Art von *Aepoemys* Thomas, 1898 (Rodentia: Muridae) aus den Anden von Venezuela

References

New species of *Aepeomys* from Venezuela 237

Authors' addresses:
José UOCHOA G., Asociación Venezolana para la Conservación de Áreas Naturales (ACOANA) and Wildlife Conservation Society Apartado 69520, Caracas 1063-A, Venezuela; (e-mail: jochen@reacciunve); MARIOSOL AGUILERA, Departamento de Estudios Ambientales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela; VICTOR PACHECO, Department of Mammalogy, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA; PASCUAL J. SORIANO, Departamento de Biología, Universidad de Los Andes, Mérida, La Hechicera, Mérida 5101, Estado Mérida, Venezuela.